Introduction to Differential Equations

What is a D.E.?

Is a statement of equality that relates an independent variable (t) a function y = f(t) and one or more derivatives y', y'', $y^{(3)}$, etc or their differentials. Examples:

- b) $3t^2y'' + 11ty' 3y = 0$
- c) $(1 + te^{ty})dy = -(1 + ye^{ty})dt$

What is a solution? How do we verify?

A solution to a D.E. on some interval is a function (or functions) y = f(t) such that y and its derivatives produce an identity in the original equation.

Ex.1 Consider the equation $3t^2y'' = 3y - 11ty'$.

a) Is $f(t) = t^2$ a solution?

$$\begin{cases}
f(t) = y(t) = t^{2} \\
y' - 2t \\
y'' = 2
\end{cases}$$

$$\begin{cases}
\rho(u) \text{ into D.E.} \\
y'' = 2
\end{cases}$$

$$3t^{2}(2) = 3(t) - 11t(2t)$$

$$6t^{2} = 3t - 22t$$

$$y(t) = t^{2} \text{ is Not a solution}$$

b) Is
$$f(t) = t^{-3}$$
 a solution?

$$\begin{cases}
f(t) = y(t) = t^{-2} \\
y' = -3t^{-4}
\end{cases}$$
Plug into DE
$$y'' = 12t^{-5}$$

$$3t^{2}(12t^{-5}) = 3t^{-3} - 11t(-3t^{-4})$$

 $6t^{-3} = 3t^{-3} + 33t^{-3}$
Yes, is a solution

Ex.2 Verify that $y(t) = A + Be^{-9t}$ is a solution to equation y'' + 9y' = 0 on the interval $(-\infty, \infty)$.

$$\gamma'(t) = -9Be^{-1t}$$
 $\gamma''(t) = 81Be^{-9t}$
 $Plus into DE$
 $-9Be^{-4t} + 81Be^{-9t} = 0$
 $\gamma'' + 9\gamma' = 0$

the family of solutions $\gamma(t) = A + Be^{-9t}$ is a solution

How do we classify D.E.'s?

- I. By order: The order of a D.E. is the order of the highest derivative that appear in the differential equation. Examples:
- a) y' = 2t is a first order differential equation.
- b) $\mathbf{e}^t y^{(3)} + 5(y^{(2)})^4 t^2 y' = 0$ is a third order differential equation.
- II. Linear vs nonlinear: A linear D.E. has the form

$$g_n(t)y^{(n)} + g_{n-1}(t)y^{(n-1)} + \cdots + g_2(t)y^{(2)} + g_1(t)y' + g_0(t)y = h(t)$$

Examples: a) $t^5y^{(3)} + \sin(t)y' = \cos(t^2)$ is a third order linear differential equation, why?

follow the above form

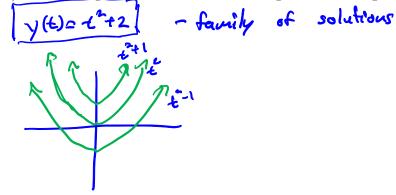
b) $\cos(t)y'' + tyy' = t^3$ is a second order **nonlinear** differential equation, why?

does not fellow above form

Remark: In the linear case, if h(t) is the zero function we say that the equation is linear and homogeneous. Otherwise, we say that the equation is linear and nonhomogeneous.

Ex.3 Given the equation y' = 2t.

a) What is the general solution? Describe the general solution geometrically.



y(0)=-3 - inital condition

Inital Value Problem (IUP) - only one solution

b) What if we were given: y' = 2t, y(0) = -3? What is the solution to this problem?

yot2-3/ 2 guess not in lecture

Initial Value Problem (I.V.P.) This is a differential equation with an initial condition.